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ABSTRACT 
There is a constant search for more accurate measurement, which generally leads to higher 

cost, greater complexity, or devices that do not lend themselves to manufacturing environments.  
For example, surface metrology can be accomplished by a number of methods, ranging from 
rulers and visual estimation (cheap, fast, and inaccurate) up to fixed Coordinate Measurement 
Machines (expensive, slow, and accurate).  The tradeoffs involved in selecting metrology 
methods generally involve these three parameters of cost (initial and operation), measurement 
speed, and accuracy.  We present a method of adding one more tradeoff:  measurement precision 
(perpendicular to the surface) vs. sampling resolution (along the surface).  Through application 
of statistical sampling and curve fitting, we can improve precision by approximately the square 
root of the amount that we decrease resolution. 

We applied this technique to a number of known and unknown targets, using the Cognitens 
WLS400 by Hexagon Metrology and a custom laser interferometry measurement system.  Using 
the enhancements described in this paper, we were able to improve the measurements 
significantly.  Measurement of a flat reference surface, for example, was enhanced by reducing 
noise a factor of 11 and improving surface measurement accuracy 2× (limited by the actual 
surface figure).  An application of this technology to a known sphere reduced noise by a factor of 
eight and demonstrated that the sphere was within its surface and diameter specifications.  We 
used this statistical technique to reduce noise in an interferometry system by 15× and 
demonstrated that the supposedly flat surface had deviations exceeding 16% over a square region 
1 cm on a side.  Finally, we modeled the WLS400 to determine its probability of identifying 
small surface features.  Based on this model, we found that statistical noise reduction can 
improve the minimum resolvable feature height by a factor of five without significant difficulty. 

BACKGROUND AND THEORY 
Metrology is the science of measurement.  For the purposes of this work, we concentrate on 

dimensional measurement of surfaces (surface metrology).  There are many ways to measure the 
dimensions of a surface, to map the actual item being measured into a mathematical abstraction.  
In the methods described in this paper, the map of the surface is in the form of a “point cloud” – 
a number of points located in three-dimensional space, each of which corresponds to a point on 
the surface of the item.  Once these points are measured, the resulting point cloud can be 
manipulated in a number of ways to produce a surface map.  The points can, for example, be 
used as the vertices of triangles or other polygons (a version of this is used for an STL file); an 
approximate surface may be constructed by combining a number of points into a single 
polygonal area with a polynomial surface description (using some interpolation system such as 
non-uniform rational basis spline, or NURBS); or a regional (rather than local) surface can be 
modeled, with adjacent regional surfaces being required to match mathematically.  Many other 
methods are possible as well. 

Often, the expected shape surface being measured (the nominal surface) is known, whether 
the surface is simple (such as a plane, cylinder, or sphere, or combination of those) or complex 
(in which case there may be a CAD file to describe the nominal surface).  In these cases, the 
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measured surface may be described in terms of its deviation from CAD (or its “actual minus 
nominal” values).  Furthermore, these deviations may be due to any combination of three causes:  
(1) the real surface deviation from nominal, δr; (2) consistent measurement inaccuracies, δm; and 
(3) random measurement inaccuracies or other random noise, δn.  The real surface geometry may 
be described in terms of (ξ, η, ζ) coordinates, where ξ and η are in the plane of the local surface 
and ζ is perpendicular to this.  Locally, then, ξ, η, and ζ correspond to x, y, and z.  At any point 
(ξ, η), the real surface “height” is then 
   ζ = ζ0 +δ r , (1) 

where ζ0 is the nominal value of the surface at (ξ, η).  The actual surface, then, is described by a 
point cloud corresponding to (ξ, η, ζ0 + δr). 

To have the best possible description of the actual surface, the other two deviations must be 
reduced.  Consistent measurement inaccuracies (δm) can be removed through careful calibration, 
or at least reduced to arbitrarily small values.  They will be ignored in this paper.  Noise (δn), on 
the other hand, cannot be eliminated.  It can reduce the accuracy of measurement and can mask 
features (Fig. 1).  This paper is concerned specifically with noise reduction and its effects on the 
measurement. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1.  Nominal surface (a) has a defect (b), still visible with low noise (c) but hidden by 
moderate noise (d). 
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In the model of Fig. 1(a), a 10×10 mm portion of a surface, nominally spherical, is shown.  
The surface only ranges over 10 µm in this area.  In Fig. 1(b), the same surface is shown with a 
slight defect whose height is ~1.5 µm.  This is the real surface, the nominal plus the real 
deviation.  In the presence of a small amount of measurement noise (3σ = ±0.9 µm), though, Fig. 
1(c) shows that the surface figure is more difficult to estimate, but the defect can still be seen.  In 
Fig. 1(d), the noise has been increased to 3σ = 3 µm, twice the size of the defect.  Although it is 
possible to see that the underlying surface is curved, the defect is not visible. 
Measurement Methods 

The two measurement methods we used are the Cognitens WLS400 and a breadboard Mach-
Zender interferometer.  The WLS400 can be configured as a manually operated system 
(designated the WLS400M – the configuration we used) or an automated system (WLS400A).  
The metrology system and measurement specifications of these configurations are identical.  The 
WLS400 is a white-light stereovision system with three cameras, 4.0 MPix each, mounted in a 
triangular pattern.  The stated accuracy of this system is 30 µm over 1 m at 2σ.  The stated 
measurement volume of a single shot is 500 mm wide, 500 mm high, and 230 mm deep, centered 
at 780 mm from the measurement head (large field of view).  Laboratory measurements (not 
stated accuracies) of a number of objects indicated that the measurement noise within a single 
shot, which relates to the noise reduction method of this paper, can be described by a standard 
deviation of ±6.0 µm (which would correspond to a 2σ span of 24 µm). 

The interferometer used a laser operating at 532 nm and had arm lengths of 350 mm.  The 
relative arm alignment was accurate to ±0.7 µr.  Each fringe period (from dark to dark) 
represents half a wavelength of the laser, or 266 nm, in the out-of-plane direction.  Speckle is 
calculated to average 16.2 µm diameter, spaced at 31.6 µm, in this system. 
Noise Reduction by Statistical Methods 

From the previous section, it is clear that the measured value at any surface is 
   ζmeas = ζ0 +δ r +δn . (2) 

It is possible to apply a number of statistical noise-reduction methods to eq. (2).  They generally 
reduce to weighted averaging, in which a noise-reduced value is calculated from a range of 
nearby points, as in eq. (3): 

 

  

ζ calc ξ0 ,η0( ) = wmnn=−N 2

N 2∑ ζmeas ξ0 + m,η0 + n( )m=−M 2

M 2∑
wmnn=−N 2

N 2∑m=−M 2

M 2∑
, (3) 

where wmn are the statistical weights.  In the simplest case, all the wmn are 1 over the summation 
range (and 0 outside it), resulting in 

 
  
ζ calc ξ0 ,η0( ) = ζmeas ξ0 + m,η0 + n( )n=−N 2

N 2∑m=−M 2

M 2∑
M +1( ) N +1( ) , (4) 

the arithmetic mean of the surface values in the range ξ0 – m/2 ≤ ξ ≤ ξ0 + m/2 intersected with 
η0 – n/2 ≤ η ≤ η0 + n/2.  In general, it is safe to assume that the three parts of eq. (2) are 
completely independent; in other words, the real deviations from nominal are not correlated with 
the nominal values, and the noise is truly random.  Based only on this, we can separate eq. (4) 
into 
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ζ calc ξ0 ,η0( ) = ζ0 +δ r +

δnn=−N 2

N 2∑m=−M 2

M 2∑
M +1( ) N +1( ) . (5) 

If we make the further assumption that the noise values follow a normal distribution (usually a 
good assumption), the expected noise value (based on the statistical standard deviation) is 
significantly reduced; if σmeas is the noise figure for a single measurement, the noise resulting 
from the calculation of eq. (5) is 

 
  
σ calc =σmeas M +1( ) N +1( ) . (6) 

For statistical methods other using wmn ≠ 1, the calculation is equally straightforward. 
Specific Methods of Noise Reduction 

We studied several methods of statistical noise reduction.  In this paper, we discuss three of 
these.  The simplest is generating the arithmetic mean over a square sampling area.  In this case, 
referring to eq. (3), wmn = 1 and M = N.  The expected noise reduction is a factor of M.  The 
second is the arithmetic mean, but over a circular region.  This can be described (statistically) as 
wmn = 1 over the range m2 + n2 ≤ (M/2)2, again with M = N.  This statistical process uses 78.5% 
as many samples as the square, and is expected to reduce noise by a factor of 0.886M.  The third 
is a Gaussian sampling process over the same square region (again, M = N).  In this case, the 
sampling weights are Gaussian, 

   wmn = e
−2 m2+n2( ) M 2( )2 . (7) 

The noise reduction value is only a factor of 0.598M, but the correlation among points is lower; 
the noise reduction can be increased by increasing M, which is safer in the Gaussian process than 
in the other two described here. 

Obviously, when several measurements are combined statistically, the result includes 
statistical correlation among the calculated values.  This leads to a reduction in image contrast.  
As shown in Fig. 2, using M = 5, using the mean value over a square area leads to correlation 
that declines linearly with pixel distance (a).  Likewise, using the mean value over a circular area 
leads to correlation that is nearly the same, but slightly higher near M/2 (b).  The Gaussian 
smoothing (c) has less correlation and is smoother. 

 
(a) 
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(b) 

 
(c) 

Fig. 2.  Correlation induced by statistical noise reduction processes, shown assuming statistical 
range of 5 pixels for (a) square mean sampling, (b) circular mean sampling, and (c) Gaussian-

weighted sampling. 
Detecting Small Features 

One of the most important parameters of a metrology system, particularly in application to 
nondestructive testing, is its capability to find small features or small deviations from nominal.  
In a recent project, the goal was to find defects whose height was 3 µm and whose diameter was 
3 mm.  To predict the probability of locating this type of defect, we applied the Targeting Task 
Performance (TTP) model developed for predicting the performance of night vision systems1.  
We modeled a metrology system based on the Cognitens WLS400, using 6 µm for the noise 
standard deviation.  Using the TTP model, we discovered that such a system has a minimum 
feature detection height of 3.5 µm (without noise reduction).  We modeled the three statistical 
noise reduction methods described above, in each case using 1 mm as the range (we applied the 
arithmetic mean method to a square 1 mm on a side and to a circle of diameter 1 mm, and we 
used the Gaussian-weighted method with equivalent range 1 mm). 

Using the TTP standard requirements for identification—recognizing a feature and being 
able to tell it apart from similar features—we found that the modeled metrology system could 
identify the small defect with a probability of 92.5% for noise detection using a square sampling 
region, 91.4% for a circular sampling region, and 75.5% if the Gaussian-weighted method was 
used.  We predicted the probability of identifying a feature 3 µm high, as a function of feature 
size (Fig. 3).  The TTP method describes a “characteristic feature size” as the square root of the 
feature area; this avoids shape-based detection methods. 
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Fig. 3.  Probability of identifying a 3-µm feature with no noise reduction (black), Gaussian-

weighted noise reduction (red), circular mean noise reduction (green), and square mean noise 
reduction (blue). 

The square and circular mean noise reduction methods have very similar probability curves; 
the greater noise reduction using the square sampling region is balanced by the lower correlation 
among pixels using the circular method.  The Gaussian-weighted method’s even lower 
correlation is not sufficient to make up for its lower noise reduction.  Even the Gaussian method, 
however, can identify a 3-µm feature 2.5-mm in extent with 50% probability, while the 
metrology system without noise reduction cannot identify any 3-µm features.  The small feature 
capabilities should be investigated further, together with using Gaussian-weighted noise 
reduction over a larger area. 

EXPERIMENTS 
To test this theory, we took data on three samples.  Two samples were flat and one was 

spherical.  One of the flat samples and the spherical sample were measured using the Cognitens 
WLS400 white-light stereovision system using the large field of view and the third was 
measured using simple laser interferometry (to test the enhancement method with speckle).  The 
noise reduction method used was the arithmetic mean method, with a circular sampling area used 
on the sphere and a square sampling area on the two flat samples. 
Flat Sample, WLS400 

The first sample used was a block (Fig. 4).  The block was made of ceramic and had a 
polished white surface finish.  The area shown in blue was selected for noise reduction.  The fit 
area was 300 mm × 75 mm.  The artifact was positioned to be in the far range of the WLS400 
and data were taken from a 45° angle; between those and the polished surface, this is a worst-
case artifact for white light metrology.  The nominal surface is a plane, so we matched the 
measured data to a plane using two-dimensional linear regression, and defined this plane as our 
nominal value. 
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Fig. 4.  Block used as flat sample for WLS400 test. 

The difference between the measurements and the best-fit plane in the test area was taken for 
each of the 52,107 samples in the point cloud.  The mean difference between measured and 
nominal was 0.19 pm, exceptionally close to zero.  The standard deviation of these residuals was 
9.30 µm, and the 3σ point range was ±37.2 µm.  This is slightly larger than three times the 
standard deviation because the errors at the edges were larger than those at the center (Fig. 5); 
the regular surface ripple seen in Fig. 5(b) indicates that these larger errors may be a surface 
feature.  Because of the angle of measurement, the measurements in the left and right corners of 
Fig. 5(b) represent a worst-case approach, near the ends of the measurement volume. 

 
(a) 

 
(b) 

Fig. 5.  Measurement noise and actual surface deviation, before (a) and after (b) statistical noise 
reduction. 

We used the arithmetic mean noise reduction method with a square sampling region 11 pixels 
(2.86 mm) on a side, for a random noise reduction of 11×.  The residuals after noise reduction 
had a mean value of 39.5 nm, still very small.  The standard deviation of the residuals was 4.55 
µm, a factor of 2.04 better than before noise reduction, and the 3σ point range was ±20.8 µm, an 
improvement of 1.79×.  Using statistical analysis, this indicates that the standard deviation of the 
real surface deviation from nominal was ±4.49 µm over this area, while the measurement noise 
standard deviation was ±8.14 µm. 
Sphere Sample, WLS400 

The next test was on a known sphere, whose diameter was specified to be 1.5000±0.0001 in. 
but whose surface was specified smooth only to ±0.001 in.  We scanned a section of the upper 
half of the sphere, a circular area whose diameter was 27.20 mm.  Based on the specification, we 
used a nonlinear least-squares method to fit a sphere of radius 19.050 mm (0.75000 in.) to the 
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data and defined that as nominal.  The mean value of the raw residuals (measured points minus 
nominal) was 0.987 µm and its standard deviation was ±18.4 µm. 

We applied the arithmetic mean noise reduction method with a circular sampling area, with 
radius 1 mm.  This included, on the average, 64 points in the cloud, which resulting in random 
noise reduction of a factor of eight (Fig. 6). 

 
(a) 

 
(b) 

Fig. 6.  Surface deviation residuals before (a) and after (b) noise reduction. 

Applying the statistical process to the sphere data resulted in mean residual value of 0.873 
µm, and standard deviation of ±15.8 µm.  This is only a reduction of 14.1% in the residual value, 
because the larger portion of the deviations from nominal is the real surface deviation, rather 
than the measurement noise.  The low value of the mean, however, indicates that the diameter of 
the sphere is measured to be accurate.  The surface of the sphere, colorized to show deviation 
from nominal, appears in Fig. 7. 

 
Fig. 7.  Surface of the sphere with locations measured from its center.  Surface color shows 

deviation from nominal (after noise reduction). 
Interferometric Measurement 

Next we measured a nominally flat, metallic surface (aluminum), mechanically polished to 
RA ≈ 60.  We used a Mach-Zender interferometer to obtain an interferogram covering a square 1 
cm on a side (Fig. 8).  The illumination wavelength was 532 nm.  Since the illuminator was a 
laser, there is considerable speckle noise; it would be much easier to see the interferogram if the 
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speckle noise were reduced.  Speckle is different from other noise sources in that, while its 
location is random, the size of each spot is relatively uniform. 

The first step in reducing the noise is to find best-fit nominal data.  From interferometry 
theory, we know that a perfect, noise-free interferogram would produce intensity that fits 

 
  
I x, y( ) = I0

1
2

1+ sin 2π x
T
+φ

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ , (8) 

where I0 is the maximum illumination (and what is shown in the intensity pattern is I/I0), T is the 
period of the fringe pattern, and ϕ is a phase factor that moves the fringe pattern right or left.  
There is no dependence on y because the interferometer was aligned with the y direction. 

 
(a) 

 
(b) 

 
(e) 

 
(c) 

 
(d) 

Fig. 8.  Noise reduction in interferometry.  The original interferogram (a) was fit to a sinusoid 
with intensity varying from 0 to 1 (b).  The difference between these two is the noise pattern (c).  

After noise reduction, the interferogram is much clearer (d).  All follow the scale (e). 
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The sinusoidal best fit had a period of 2.39 mm, indicating a slope of 111 µr (23.0 arc 
seconds).  The difference between the measured data of Fig. 8(a) and the best fit of Fig. 8(b), 
shown in Fig. 8(c), is not fully random.  The mean value of these residuals is 9.67%, indicating 
that there is a significant amount of real surface deviation from the nominal.  The standard 
deviation of the deviation is 18.6%.  After noise reduction using arithmetic mean over a square 
sampling region 0.167 mm on a side, the appearance of speckle has been reduced, as seen in Fig. 
8(d).  The mean value has remained virtually constant at 9.70%, demonstrating that the noise 
reduction only operated on genuinely random noise.  The reduced standard deviation was 16.1%, 
indicating that the real surface deviation was 16.0% and the random noise was 9.35%. 

SUMMARY AND CONCLUSIONS 
We have developed a statistical method for noise reduction of three-dimensional metrology 

systems.  The method involves combination of measurement values over a range of points, and 
permits weighting the points (enabling the user to, for example, assign confidence values to the 
various measurements).  Applying this to the Cognitens WLS400 white-light metrology system, 
we applied an unweighted 11×11-pixel sampling region to a flat surface, and reduced the 
deviation from nominal by more than a factor of two.  Using statistical methods to separate 
random noise from actual surface variation, we determined that the standard deviation of the 
actual surface (compared to nominal) was ±4.49 µm over the measured 300 mm × 75 mm region.  
Measurements of a sphere whose diameter was nominally 1.5000 inch found that the diameter 
was extraordinarily accurate.  The surface was specified to fit a sphere to an accuracy of ±25.4 
µm, and we measured that its accuracy was ±15.8 µm, using unweighted noise reduction over a 
circular area of 2 mm diameter.  We then applied the noise reduction technique to an 
interferometric measurement with speckle noise.  We were able to reduce the appearance of 
noise in the image, and determined that the surface deviated 16.0% from perfect flatness over the 
10 mm ×  10 mm region measured, using unweighted noise reduction over a square region 167 
µm on a side. 

We also modeled a metrological system similar to several that are commercially available to 
determine their capabilities of identifying small features.  We discovered that, although the 
statistical noise reduction induces correlation among nearby points, the reduction in noise more 
than makes up for this when identifying small features.  Our modeled system, for example, was 
limited to features whose characteristic size was about 3.5 µm and larger, while statistical 
processing reduced this minimum identifiable size to 2.0 µm for Gaussian-weighted noise 
reduction with 5-pixel range, 0.75 µm for unweighted noise reduction over a circular region of 5-
pixel diameter, and 0.66 µm for unweighted noise reduction over a square region 5 pixels on a 
side.  These improvements indicate that the statistical surface metrology enhancement method 
can be useful in detecting small features. 
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