
1.	 INTRODUCTION

Photorefractive amplification has a number of advantages 
as part of a vibrometric detection system.  It provides 
significant amplification (>20 dB) in a narrow band- 
width (<1 nm), resulting in significant enhancement of the 
signal-to-noise ratio (SNR).  It is easy to set up, adapt- 
able to many real-life situations, and can be used over a 
wide spectral range with little modification.  It has the dis-
advantage, however, of being a slow process;2 response 
bandwidth is rarely greater than ~100 Hz.  Under certain 
conditions, however, photorefractive amplification occurs 
over a much larger bandwidth.  These conditions include 
measuring the motion of a target illuminated by a CW 
laser1 and situations in which the photorefractive grating 
is independent of the signal.3  Our experiments demon-
strated photorefractive amplification of signals with band-
width >2 MHz, limited by our equipment, and calculations 
indicate amplification of signals centered at 488.0 nm with 
bandwidths up to 832 GHz, all in Cu:KNSBN, which has 
a photorefractive grating response bandwidth <5 Hz.

2.	 THEORY

Theory of the fast photorefractive effect is based on 
both photorefractive theory and vibrometric theory.  The 

photorefractive theory begins with the Standard Photo-
refractive Model (STPM).4

2.1	 Photorefractivity – The Standard Model

Photorefractivity is the result of space charge displacement 
in media that have a large electro-optic effect.  These dis-
placed charges result in a large internal field, which creates 
a refractive index modulation due to the nonlinear effect.  
In many cases, the internal electric field is limited only 
by the diffusion field. Then, if the illumination is mod-
ulated sinusoidally by interference between two beams, 
the space-charge field will also be sinusoidal, and will be 
shifted by 90° with respect to the illumination. This results 
in maximum power transfer from one beam to the other 
(which gains power and which loses it depends on the rela-
tive polarizations of the beams, the sign of the electro-optic 
coefficient, and the direction of the c-axis of the medium).

The STPM models a photorefractive medium as a type 
of doped semiconductor.  The host medium is transparent at 
the illumination wavelength.  The dopant absorbs strongly 
at that wavelength.  In this situation, the bandgap of the 
dopant is less than that of the host, so it adds additional 
effective energy levels to the medium.  When a photon 
enters the medium, it ionizes the dopant, moving an elec-
tron into the host conduction band.  This electron then gives 
up a small amount of energy, ending in a trap level at or 
near the conduction band energy of the dopant, but below 
the conduction band energy of the host (Fig. 1).
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The electron in the trapping level may then move due 
to diffusion, or be moved by an applied electric field.  If it 
ends up in an area where there is a considerable amount of 
light, it is likely to be knocked out of the trapping level and 
back to the valence band of the dopant by stimulated deex- 
citation.  If the electron ends up in a dark location, its prob-
ability of deexcitation is much lower; it can only return to 
its valence band spontaneously, with probability depend-
ing on the ratio of available thermal energy to the energy 
needed to deexcite the electron [kBT/(Egd + Egh – Et),
where kB is Boltzmann’s constant, T is the local temper-
ature in absolute units, Egd is the dopant bandgap energy, 
Egh is the host bandgap energy, and Et is the energy of the
trapping level].  In many photorefractive materials, partic-
ularly those excited by visible light (e.g. BaTiO3, SBN, 
LiNbO3), this can be very slow.  The probability density
of spontaneous emission at room temperature is approx-
imated in Figure 2 as a function of the long-wave cutoff 
wavelength of the dopant in the host medium.

Since the electrons congregate in the dark areas and 
flee the illuminated areas, if the photorefractive medium is 
illuminated by an interference pattern, the internal space-
charge field will also be repetitive.  The layout of such a 
situation, with the two beams that form the interference 
pattern both linearly polarized in the plane of incidence, is 
shown in Figure 3.

In the layout described by Fig. 3, the contrast of the 
interference pattern is
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If the photorefractive medium is limited by diffusion, and 
the medium is both insulated and a good insulator, the 
STPM tells us that the long-term space-charge field will 
be
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where k is the propagation vector of I0 and I1, q is the 
magnitude of the electron charge, and j is a phase constant 
selected so that the intensity of the interference pattern is 
Iip = Imaxcos(2px/L + j).  The build-up to this final field
is exponential; its time dependence is

	 E x t E x I x hc tsc sc R, , exp( ) = ∞( ) − ( ) − { }( )1 σ λ γ 	(3)

where s is the absorption cross-section of the dopant at
the wavelength of the illumination, I(x) is the total illu-
mination at position x, and gR is the recombination (or 
spontaneous emission) rate for trapped electrons.  Equa- 
tion (3) also shows that, for the modulated field to form at 
all, the total illumination must satisfy I0 + I1 > hcgR/ls.
Since gR increases both with long cutoff wavelength of the
dopant and with grating formation speed of the photore-
fractive material, faster photorefractive materials require 

Fig. 1.	 Photoexcitation of an ion in a photorefractive material requires photon energy great enough to ionize the dopant, but small enough to avoid 
ionization of the host.

Fig. 3.  If the two illumination beams are incident on the medium at the 
same angle with respect to the z-axis, the resulting interference pattern 
gradient is along the x-axis.

Fig. 2.  The approximate deexcitation probability of photorefractive 
Ge:CdTe is 9× as great as that of Cu:KNSBN at room temperature.
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stronger beams to generate the internal field.  Longer wave-
length operation also requires higher power, but the effect 
is less strong than the grating formation speed effect.

Now that we know the electric field, we can calcu-
late the refractive index change caused by the first-order 
electro-optic effect.  In the layout of Figure 3, the internal 
field is directed only along x.  If the c-axis of the medium 
is also aligned with the x-axis, the refractive index change 
caused by the space-charge field is
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where r33 is the linear electro-optic coefficient for light 
polarized along the medium’s c-axis, caused by an elec-
tric field directed along this axis; ne is the refractive index 
of the extraordinary ray (polarized along the c-axis of the 
medium); and j has been set to 0 by selection of the origin.

The photorefractive medium can now be described as 
a transparent medium with a sinusoidal index variation.  
Under the assumptions that Dne ≪ ne and that the medium 
is not optically active, Kogelnik’s theory of volume Bragg 
gratings5 enables calculation of the photorefractive grating 
diffraction efficiency:
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where Dne is calculated from Eq. (4) and, as shown in 
Figure 3, thickness of the photorefractive medium is d.  The 
grating spacing has been calculated from
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(6)

The photorefractive diffraction efficiency defines the limit 
of how much light can be diverted from one beam into the 
other.  The raw gain factor of the photorefractive grating, 
assuming no absorption in the host, is
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As an example, assume we are using Cu:KNSBN, whose 
extraordinary refractive index is 2.33 and whose relevant 
electro-optic coefficient is r33 = 270 pm/V.  Operating at
room temperature, with 488-nm illumination beams meet-
ing at 45°, the amplification can exceed 80 dB (Figure 4).

2.2	 Vibration Detection
We have seen that a photorefractive medium provides 
excellent gain, if the interference pattern contrast and 
medium thickness are selected properly.  To use this mate-
rial in a vibrometer, however, it is necessary to determine 

how it will respond to a signal reflected from a vibrating 
target (Figure 5).

The vibrating target changes the overall path length 
of the beam by 2Dz(t).  (Photorefractive amplification is 
an interferometric measurement technique, so only axial 
motion—described here as motion along the zaxis—is 
measured.  Transverse motion does not affect the path 
length, so it is not detected by the fast photorefractive 
effect.)  Assuming the distance z0 to be much greater than 
the distance between the illumination and the reception, 
we can ignore angular propagation effects.  Then if the 
illumination E(z, t) is a plane wave traveling in the +z 
direction, the reflected beam can be written
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In other words, the reflected beam is the exact beam that 
would be expected from a stationary target, multiplied by 
the phase factor ei2kDz(t).  Note that this is different from 
a pure frequency shift; essentially, instead of changing w
into w + Dw, the vibration has changed z into z + Dz.  
Vibrometry includes the need to determine the frequency 
components of the measured vibration; to determine the 
frequency components of ei2kDz(t) we first take the Fourier 
decomposition of the vibration itself:
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Fig. 4.  The photorefractive amplification depends sinusoidally on 
medium thickness and inversely on contrast.

Fig. 5.  The vibrating target imposes a phase modulation on the reflected 
beam.
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where n0 is the frequency of the complete vibrational sig-
nal.  Using Eq. (9), and remembering that the motion must 
be real, we can write the phase factor as
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Each Fourier component, then, has amplitude 2kan.  For 
each Fourier component we use Jacobi-Anger expansion:
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where Jm(z) is the mth-order Bessel function of the first 
kind evaluated at z.  We first consider the Fourier compo-
nent at no frequency shift, n = 0.
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So this component, as expected, does not vary with time.  
Nonetheless, regardless of vibrational frequency n0, there 
is a signal at zero frequency shift.  By the selection of z0
we ensured that Dz(t) is even, so a0 = 0 and the zero-
frequency component is just 1, and the exponentials of 
the ±m orders add to cosine functions.  Thus, for n = ±2 
(a-1 = a1 = 0) the phase factor is
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This balancing of the n with the –n component contin-
ues for all n > 0.  But the peak value of the Bessel func-
tion Jm(z) drops exponentially with |m| and inversely with 
|z1/2|, so we can limit ourselves to values m = 0 and ±1,
and to the first few values of n (at least for vibration ampli-
tudes on the order of an illumination wavelength).  Indeed, 
a typical vibrational signal will have only a few frequency 
components; typically
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is a sufficiently accurate approximation to the vibrational 
signal.  The two important points are:  (1) there is a reflected 
signal at no frequency shift, containing about half the total 
power; and (2) there is another signal at twice the vibration 
frequency, containing most of the rest of the power.  Since 
the reflected beam has a large component at zero frequency 
shift—in other words, at the same exact wavelength as 
the illuminating beam—a static photorefractive grating is 
formed.  The fast photorefractive effect is the diffraction 
of the frequency-shifted component from this stationary 
photorefractive grating.  Since there is no need to form a 

grating at the difference frequency, the grating formation 
time does not limit the amplification bandwidth, as would 
be the case if the ref lected beam had a pure frequency 
shift, instead of a phase modulation.

The reflected signal can be recovered through het-
erodyne or homodyne detection.  Homodyne detection 
involves mixing it with a portion of the illumination beams 
to generate a signal at the beat frequency.  If these two 
beams are mixed in a photorefractive crystal, the zero-shift 
component of the reflected signal will interfere with the 
outgoing beam to create a stable interference pattern.  This 
creates a sinusoidal index variation in space, which the 
frequency-shifted portion of the beam will then use for 
photorefractive amplification.  Thus, despite the low speed 
of setting up the photorefractive grating, relatively high 
vibrational frequencies can still be amplified.

2.3	 Amplification Bandwidth and	
Angular Acceptance

The photorefractive grating can be described in terms 
of phase or refractive index.  In the diffusion limit, as 
described above, the refractive index is modulated sinu- 
soidally and Dn ≪ n.  This meets all Kogelnik’s approx-
imations for volume Bragg gratings and the two beams 
at the same frequency are automatically at the Bragg 
angle with respect to the photorefractive grating.  We have 
assumed so far that these beams are plane waves.  If one of 
the beams is expanding or focusing, however, it is not quite 
a plane wave.  This can happen, for example, when the 
reflected signal is collected by a telescope to increase its 
intensity prior to its being directed into the photorefractive 
medium.  If the beam has some divergence or convergence 
angle Dq, Eq. (7) becomes
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where Dn is the Dne of Eq. (4).  The acceptance angle 
is Dq ≈ Dn.  With the model used to produce Figure 4,
the acceptance angle is 1.9 arc minutes (0.52 mr).  If the 
beam is a plane wave, the amplification bandwidth can 
be calculated instead.  For this example, dq/dl ≈ 0.385/l, 
so Dl ≈ 0.660 nm (Dn ≈ 832 GHz).  In other words,
when a photorefractive amplifier with the characteristics 
described here is used to detect signals, its amplification 
bandwidth is ~0.66 nm (0.14% of the illumination wave-
length) and it can detect vibration signal frequencies as 
large as >800 GHz.  Note also that the narrow passband 
of the photorefractive amplifier enables it to act as a filter, 
passing <0.15% of the background together with 100% of 
the signal for a potential SNR improvement up to 48 dB.
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3.	 EXPERIMENT AND DISCUSSION

We tested a photorefractive crystal, Cu:KNSBN, under 
illumination at 488.0 nm from a single-frequency argon 
laser.  Its linewidth was sufficiently narrow to ensure 
that all beams in the experiment were mutually coher- 
ent.  The crystal chemistry was studied by electron 
diffraction spectroscopy at the University of Califor- 
nia, Irvine, spectroscopy facility, and determined to have 
the formula (K0.45Na0.55)0.16(Sr0.78Ba0.22)0.92Nb2O6.  This
is a slight variation from the standard KNSBN for- 
mula of (K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6,6 but the crys-
tal performed as we would expect from Cu:KNSBN.  
We measured the refractive indices at 488.0 nm to be 
ne = 2.33234±0.00558 and no = 2.38091±0.01851.  The
linear electro-optic coefficients are r13 = 50 pm/V, r42 =
400 pm/V, and r33 = 270 pm/V.7  We measured the mass 
density of the crystal to be 6.33 g/cm3.  The Cu doping was
nominally 0.04% by weight (meaning 0.04% by weight 
of CuO added to the mixture that makes KNSBN); this 
corresponds to Cu+ ion density of 1.92×1019 cm-3.  The 
crystal measured 4 mm × 5 mm × 6 mm, with its c-axis 
along the 6-mm length.  All experiments were performed 
at controlled room temperature, 297K.

The experimental layout is shown in Figure 6.  Each 
beam made an angle of p/8 (22.5°) with the normal to
the crystal face.  The beams were polarized in the plane of 
incidence, resulting in a photorefractive grating whose gra-
dient was in the same direction as the crystal optical axis.  
The intensity of the reference beam, I0, was 8.15 W/cm2

and that of the signal beam, I1, was 97.8 mW/cm2.  The 
expected interference pattern contrast, then, was 0.2.

Given the relevant parameters—ne  =  2.33234, 
r33 = 270 pm/V, T = 297K, l = 488.0 nm, q = 22.5°, 
m = 0.216, and d = 4.00 mm—we expect single-pass 
amplification of ~35 for the beam without frequency shift-
ing.  Our measurements showed steady-state amplification 
of 33.5, well within the experimental error.  When we 
blocked the reference beam (I0), then observed the output 
(Iout) as we unblocked the reference, we determined that 
the amplification had a response time of 0.2323 s (from 0 
to 1–1/e of final output).  From this we estimated that, with 
total input intensity I0 + I1 = 8.25 W/cm2, amplification

of signals with frequencies slightly different from that of 
the reference would have a bandwidth of 4.305 Hz.

We then tested the response with the phase modulator 
set to a sawtooth wave, with retardation changing linearly 
from 0 to 2p.  If the repetition rate of the sawtooth is Dn,
this phase modulation is exactly the same as a pure fre-
quency shift of Dn.  We ran a logarithmic sweep from 
Dn = 0 to 20 Hz.  The amplification of this system matched 
the exponential model to an accuracy of 98.6% (Figure 7(a)).

If we consider the amplified signal beam (Iout) to consist
of “information” on top of a “carrier,” the “information” 
signal will be the portion of the amplified signal at the 
modulation frequency (red line in Figure 7(b)).  The “infor-
mation” bandwidth of our photorefractive amplifier was 
~5 Hz, although there was sufficient random noise that 
we estimate its actual bandwidth to be the same as that of 
the “carrier” (red line in Figure 7(a)).  At 10 Hz, the “infor-
mation” amplitude has dropped to <25% of its dc value; 
by 20 Hz it has dropped to <15%.

We then repeated the experiment, but instead of using 
a sawtooth wave to drive the phase modulator we used a 
sine wave.  Thus, instead of a frequency shift, we gener-
ated a pure phase shift.  This phase shift is predicted to 
generate mainly two Fourier components:  one at zero fre-
quency shift and the other at 2Dn, each with about half the 

Fig. 7. (a) Photorefractive amplification, as a function of frequency dif-
ference between the beams, had a bandwidth of 4.3 Hz.  (b) The “infor-
mation” portion of the signal had a bandwidth somewhat larger, ~5 Hz.

Fig. 6.  The Cu:KNSBN test was performed at an illumination wave-
length of 488.0 nm.

(a)

(b)
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power.  The zero-shift component of the signal beam should 
interfere with the reference beam to produce a photo- 
refractive grating, and the shifted component should be 
amplified approximately the same amount across the fre- 
quency sweep.  We predicted a drop in “carrier” amplifi-
cation but not in “information” amplification.  Since the 
“information” also participated in the photorefractive grat-
ing, we predicted a wider bandwidth for the “carrier” as 
well.  This experiment validated our predictions (Fig. 8).

The parameters of this experiment, assuming diffusion 
limit, indicate that the internal electric field amplitude is 
Esc = 3.57 V/cm, resulting in a refractive index modulation 
of 5.215×10-4.  The Kogelnik model predicts an accep-
tance angle of 1.79 arc minutes, wavelength acceptance of 
0.661 nm, and amplification bandwidth of 832 GHz.  This 
was far beyond our measurement capabilities.  In a previ- 
ous work,1 we demonstrated large photorefractive gain for 
phase modulation frequencies up to 2 MHz, limited by the 
capabilities of our modulator.

Since the grating formation time of the Cu:KNSBN 
crystal predicts an amplification bandwidth of 4.3 Hz, we 
studied the steady-state amplification of signals with phase 
modulation up to 50 Hz compared to the reference beam.  
These showed a slight increase in amplification as we 
increased the modulation frequency from 0 to ~3 Hz, 

followed by a slow decline increasing the frequency to 
50 Hz (Figure 9(a)).  The amplification remained between 33 
and 34.5 over this range.  It is interesting that at the pre-
dicted amplification bandwidth of 4.3 Hz, the amplification 
is ~2% higher than at dc.  We then extended our mea-
surements out to a modulation frequency of 4 MHz, and 
Figure 9(b) demonstrates that the amplification was con-
stant over this range to within 8.5% (and the low point 
near 1.3 MHz is attributed to an acoustic resonance).  We 
were operating beyond the published limits of our phase 
modulator at this bandwidth, and could not make accurate 
measurements at higher frequencies, which will be needed 
to fully validate our model.

We should note that the Kogelnik model predicts that 
two beams interfering in an existing volume Bragg grating, 
at the Bragg angle, would also result in energy transfer 
from one beam to the other.  There would appear to be 
significant advantages to using a constant Bragg grating 
as the amplification medium, rather than a photorefractive 
crystal with its attendant difficulties – slow setup speed, 
sensitivity to temperature, expense of the nonlinear opti-
cal crystal, etc.  We can determine the optimum thickness 
of a Bragg grating directly from Kogelnik’s formula for 
diffraction efficiency, as reproduced in Eq. (5).  The opti-
mum thickness can be shown to be
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Fig. 8. (a) Photorefractive amplification under phase modulation (blue) 
has a larger bandwidth than predicted (red) for frequency modulation. 
(b) The “information” portion of the signal, which is the phase-modulated 
portion, was amplified approximately evenly over the 20-Hz frequency 
sweep.

Fig. 9.  Photorefractive amplification of phase-modulated signals was 
constant to within 2.3% over the modulation frequency range dc-50 Hz 
(a), and to within 8.5% from dc-4 MHz (b).

(a)

(a)

(b)

(b)
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where p is an integer.  In the experiment described above, 
the optimum thickness is 611 µm.  This is very thick 
for a holographic Bragg grating, although permanent cus-
tom gratings can be purchased in this thickness.  Some 
higher-order values—3.06 mm, 4.28 mm, and 5.50 mm—
are very convenient for photorefractive crystals.  There is 
also a tradeoff between refractive index modulation and 
optimum thickness; a larger index modulation enables a 
thinner grating, although this also increases the amplifica-
tion bandwidth (reducing the SNR gain).  For our experi-
ment, the acceptance angle was calculated to be <2 arc 
minutes.  If a permanent volume Bragg grating is used as 
the energy-transfer medium, the two beams must each be 
kept in alignment to within half this value.  Photorefractive 
gratings, however, are created by the beams that transfer 
energy – and automatically remain aligned at exactly the 
Bragg angle.

The experiments we performed used a signal beam 
whose intensity was 1.2% that of the reference beam.  This 
is a reasonable approximation to real-world vibrometry 
for targets several meters away from the illuminator.  In 
longer-range vibrometry, the ratio could easily be much 
smaller.  This results in greater amplification (see Figure 4).  
The theoretical analysis, however, ignored noise in the 
photorefractive crystal itself.  While the amplification pro- 
cess is noise-free, the gain [Eq. (7)] is dependent on 
temperature.  Our measurements (Figure 7) show random 
noise whose amplitude is ~5% of the amplified signal, 
or ~0.1 V.  Johnson noise in this region is three orders 
of magnitude less than this, and gain f luctuations this 
large would require rapidly fluctuating temperature, so we 
attribute this to shot noise; we calculate this to be 4% of 
the total signal in this experiment, in close agreement to 
the measurements.  Our calculations and experiments indi- 
cate that the sensitivity of a shot noise-limited photorefrac-
tive vibrometer will enable recovery of signals far below 
the limits of existing vibrometers, almost to the level of 
the SNR increase inherent in photorefractive amplification.

4.	 SUMMARY AND CONCLUSIONS

We tested Cu:KNSBN and demonstrated that its photore-
fractive properties matched well with the STPM.  When 
illuminated at 488.0 nm with a reference beam whose 
intensity was 8.15 W/cm2 and a signal beam of inten-
sity 97.8 mW/cm2, the photorefractive grating formation 
time was 0.2323 s (rise time from 0 to 1–1/e).  Ambient 
temperature was 297K (75.0°F).  Used as a photorefrac-
tive amplifier, the crystal had a bandwidth of 4.305 Hz 
(1/0.2323 s) for pure frequency shifts of the signal beam 
with respect to the reference beam.

Vibrometry, however, measures phase modulation rather
than frequency shifts.  We developed a model of vibration 
measurement that predicted a much wider amplification 
bandwidth for phase modulation than frequency modu-
lation.  Our model predicts that a target vibrating sinu-
soidally at n0 will produce signals at frequency differences 
of ±2n0, ±4n0,…with the amplitude of the mth component 
falling exponentially with m.  Most importantly, nearly 
half the power of the signal will be at zero frequency shift, 
interfering with the reference beam to produce a standing 
photorefractive grating and enabling photorefractive ampli- 
fication at phase modulation frequencies up to hundreds of 
GHz.  We demonstrated that, while single-pass photorefrac-
tive amplification fell an order of magnitude for frequency 
shifts of 20 Hz, amplification of phase modulated signals 
showed no decline over the same range.  We also demon-
strated that photorefractive amplification remains nearly 
constant under these illumination conditions over a band-
width exceeding 4 MHz.

The application of these results to vibrometry is straight- 
forward.  Photorefractive amplification is a field-tested 
method of increasing an optical signal’s intensity up to 
80 dB, with fieldable SNR improvements exceeding 40 dB. 
Since vibrometry measures phase modulation, our exper-
iments demonstrate that photorefractive amplification can 
significantly enhance measurements of vibrometric sig-
nals up to 4 MHz (and much greater, according to the 
theory), with large signal amplification and significant 
SNR improvement.  This improves vibrometry for targets 
against bright backgrounds, reduces the power needed for 
the vibrometric illuminator, and greatly extends the dis- 
tance at which vibrometric measurements can occur.  The 
self-referencing, self-aligning capabilities of photorefrac-
tive amplification also reduce the need for alignment in 
operation.
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